If it's not what You are looking for type in the equation solver your own equation and let us solve it.
124+x^2=180
We move all terms to the left:
124+x^2-(180)=0
We add all the numbers together, and all the variables
x^2-56=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| .5x+6=3/2(x+6) | | -16x^2-50x=0 | | 25m+6m-12m+7=26 | | 7x=3x+x | | -21k+41k+29k-12k-26k+(-43)=-10 | | 0.8x-4=0.45x+3 | | 3x-11=7-4(x+12) | | -21k+41k+29k-12k-26k+-43=10 | | 7.2/3.2=a/5 | | 5.6k=19.156 | | 5x-22=85 | | 5x+22=85 | | 8-2z=5-5z | | 3=-30h+6 | | 180(n-2)=7560 | | -21k-(-41k+29k-12k-26k+-43=-10 | | 2.4=x-(.21x) | | 5x+(2x+3)+(3x-3)=180 | | 20x-20x+4x-x-2=16 | | 24x9x=-3 | | m=8+1/2 | | -3j-16j+7j+17j+12j=-17 | | -3/2=2x | | 6d+8=8 | | 12v-6v-4v+5v-1=20 | | 1/4c+2=3/8 | | 2=14t-14 | | 6k+4k-8k=12 | | 4x+1+6=2x+3 | | 4z÷2z+3=30 | | 8y+-15y+y-17y-(-3y)=-20 | | 4c-3c-c+3c=15 |